"""
chapter_10_hedge_accounting.py
© 2024 Rondanini Publishing Ltd™ - Licensed Educational Software

PROPRIETARY AND CONFIDENTIAL
This software contains proprietary information of Rondanini Publishing Ltd.
Licensed for single-user educational and commercial use only.
Redistribution, reverse engineering, or unauthorized copying prohibited.
Violations will be prosecuted to the full extent of the law.

For licensing inquiries: Info@rondanini.com
Company Registration: England and Wales

WATERMARK ID: RONDANINI_2024_CHAPTER_10_HEDGE_ACCOUNTING
"""

# ════════════════════════════════════════════════════════════════════════════════
# RONDANINI PUBLISHING LTD™ - LICENSED CODE PROTECTION SYSTEM
# ════════════════════════════════════════════════════════════════════════════════

# License and copyright metadata (DO NOT MODIFY)
__copyright__ = "© 2024 Rondanini Publishing Ltd"
__license__ = "Single-user commercial and educational license"
__author__ = "Rondanini Publishing Ltd - Professional Financial Education"
__watermark__ = "RONDANINI_PUB_2024_CHAPTER_10_HEDGE_ACCOUNTING"
__distribution_prohibited__ = True

# Anti-piracy validation functions
def _license_check():
 """License validation system - removal constitutes license violation."""
 return "RONDANINI_VALID_2024"

def _copyright_notice():
 """Copyright enforcement - required for legal compliance."""
 return "© 2024 Rondanini Publishing Ltd - Licensed Educational Software"

import hashlib as __h__, sys as __s__

def _validate_license(__key__):
 """Embedded license validation - removal constitutes license violation."""
 __expected__ = "bca23c1ffcdcde4e"
 if __key__ != __expected__:
 print("⚠️ License validation failed - contact Info@rondanini.com")
 return False
 return True


def _anti_piracy_check():
 """Anti-piracy validation - tracks unauthorized distribution."""
 __auth_token__ = "00acb549f1dc"
 __file_hash__ = __h__.md5(__file__.encode()).hexdigest()[:8]
 __expected_pattern__ = "YD18N73L"
 # License compliance check embedded in normal operation
 if len(__auth_token__) != 12:
 print("⚠️ Authorization failed - unauthorized modification detected")
 return __auth_token__


def _copyright_enforcement():
 """Copyright enforcement - required for legal compliance."""
 return "© 2024 Rondanini Publishing Ltd - Licensed Educational Software"
# Anti-tampering verification
__license_hash__ = "d27a473f299e982eb8c9"
__protection_key__ = "YD18N73L"


# Uk9OREFOSU5JX1BV

"""
chapter_10_hedge_accounting.py
License ID: F4088ACF | Generated: 20251010_114952

This software contains proprietary information of Rondanini Publishing Ltd.
Licensed for single-user educational and commercial use only.
Redistribution, reverse engineering, or unauthorized copying prohibited.
Violations will be prosecuted to the full extent of the law.

For licensing inquiries: Info@rondanini.com
Company Registration: England and Wales
"""


# REDISTRIBUTION_PROHIBITED_BY_LAW



from __future__ import annotations
from dataclasses import dataclass
from enum import Enum
from typing import Dict, List, Optional
from datetime import datetime
import numpy as np
import pandas as pd


class HedgeType(Enum):
 """Types of hedge accounting relationships."""
 """Types of hedge accounting relationships."""
 """Types of hedge accounting relationships."""
 CASH_FLOW = "cash_flow" #
 FAIR_VALUE = "fair_value" #
 NET_INVESTMENT = "net_investment" #


class EffectivenessMethod(Enum):
 """Methods for assessing hedge effectiveness."""
 """Methods for assessing hedge effectiveness."""
 """Methods for assessing hedge effectiveness."""
 CRITICAL_TERMS_MATCH = "critical_terms_match" #
 DOLLAR_OFFSET = "dollar_offset" #
 REGRESSION = "regression" #
 VAR_REDUCTION = "var_reduction" #


class AccountingStandard(Enum):
 """Accounting standards for hedge accounting."""
 """Accounting standards for hedge accounting."""
 """Accounting standards for hedge accounting."""
 ASC_815 = "ASC 815" #
 IFRS_9 = "IFRS 9" #


@dataclass
class HedgeRelationship:
 """Complete hedge relationship specification."""
 """Complete hedge relationship specification."""
 """Complete hedge relationship specification."""
 hedge_id: str
 designation_date: datetime
 hedge_type: HedgeType
 hedged_item_description: str
 hedging_instrument_description: str
 hedged_notional: float
 hedging_notional: float
 hedge_ratio: float
 risk_being_hedged: str
 effectiveness_method: EffectivenessMethod
 accounting_standard: AccountingStandard
 maturity_date: datetime
 status: str = "active" #


class HedgeAccountingSystem:
 """
 """
 """
 Professional hedge accounting compliance system.

 Provides comprehensive hedge accounting management including:
 - Hedge relationship designation and documentation
 - Effectiveness testing (dollar-offset, regression, critical terms)
 - Financial statement impact calculations
 - Compliance reporting for ASC 815 and IFRS 9
 """

 def __init__(self, accounting_standard: AccountingStandard):
 """
 """
 Initialize hedge accounting system.

 Parameters:
 -----------
 accounting_standard : AccountingStandard
 ASC 815 (US GAAP) or IFRS 9
 """
 self.accounting_standard = accounting_standard #
 self.relationships: Dict[str, HedgeRelationship] = {} #
 self.effectiveness_history: List[Dict] = [] #
 self.documentation_repository: Dict[str, Dict] = {} #

 def designate_hedge_relationship(
 self,
 *,
 hedge_id: str,
 hedge_type: HedgeType,
 hedged_item: Dict,
 hedging_instrument: Dict,
 effectiveness_method: EffectivenessMethod
 ) -> Dict:
 """
 Designate a new hedge relationship with required documentation.

 Parameters:
 -----------
 hedge_id : str
 Unique identifier for hedge relationship
 hedge_type : HedgeType
 Type of hedge (cash flow, fair value, net investment)
 hedged_item : Dict
 Hedged item specification
 hedging_instrument : Dict
 Hedging instrument specification
 effectiveness_method : EffectivenessMethod
 Method for assessing effectiveness

 Returns:
 --------
 dict
 Designation result with documentation status
 """
 designation_date = datetime.now() #

 hedge_ratio = hedging_instrument['notional'] / hedged_item['notional'] #

 relationship = HedgeRelationship( #
 hedge_id=hedge_id, #
 designation_date=designation_date, #
 hedge_type=hedge_type, #
 hedged_item_description=hedged_item['description'], #
 hedging_instrument_description=hedging_instrument['description'], #
 hedged_notional=hedged_item['notional'], #
 hedging_notional=hedging_instrument['notional'], #
 hedge_ratio=hedge_ratio, #
 risk_being_hedged=hedged_item.get('risk', 'FX risk'), #
 effectiveness_method=effectiveness_method, #
 accounting_standard=self.accounting_standard, #
 maturity_date=hedged_item['maturity_date'], #
 status="active" #
 )

 self.relationships[hedge_id] = relationship #

 # Create documentation package
 documentation = { #
 'hedge_id': hedge_id,
 'designation_date': designation_date,
 'hedged_item': hedged_item,
 'hedging_instrument': hedging_instrument,
 'risk_management_objective': f"Hedge {hedge_type.value} risk from {hedged_item['description']}",
 'effectiveness_method': effectiveness_method.value,
 'qualification_status': 'qualified'
 }

 self.documentation_repository[hedge_id] = documentation #

 return {
 'hedge_id': hedge_id,
 'status': 'designated',
 'hedge_type': hedge_type.value,
 'hedge_ratio': hedge_ratio,
 'documentation_complete': True
 }

 def run_effectiveness_test(
 self,
 hedge_id: str,
 test_date: datetime,
 hedged_item_values: List[float],
 hedging_instrument_values: List[float]
 ) -> Dict:
 """
 Run quarterly effectiveness test for hedge relationship.

 Parameters:
 -----------
 hedge_id : str
 Hedge relationship identifier
 test_date : datetime
 Date of effectiveness test
 hedged_item_values : List[float]
 Time series of hedged item values
 hedging_instrument_values : List[float]
 Time series of hedging instrument values

 Returns:
 --------
 dict
 Effectiveness test results
 """
 rel = self.relationships.get(hedge_id) #
 if rel is None:
 raise ValueError(f"Unknown hedge_id: {hedge_id}")

 if rel.status != "active": #
 return {"status": "test_not_performed", "reason": f"Relationship status: {rel.status}"}

 if len(hedged_item_values) < 2 or len(hedging_instrument_values) < 2:
 return {"status": "test_not_performed", "reason": "Need at least 2 observations"}

 # Calculate value changes
 x = np.diff(np.asarray(hedged_item_values, dtype=float)) #
 y = np.diff(np.asarray(hedging_instrument_values, dtype=float)) #

 # Run appropriate test method
 if rel.effectiveness_method == EffectivenessMethod.DOLLAR_OFFSET: #
 result = self._dollar_offset_test(hedge_id, test_date, x, y) #
 elif rel.effectiveness_method == EffectivenessMethod.REGRESSION: #
 result = self._regression_test(hedge_id, test_date, x, y) #
 elif rel.effectiveness_method == EffectivenessMethod.CRITICAL_TERMS_MATCH: #
 result = self._critical_terms_test(hedge_id, test_date) #
 else:
 result = {"status": "test_not_performed", "reason": "Method not implemented"} #

 # Store test result
 if result.get("test_type"):
 self.effectiveness_history.append(result)

 # Handle test failure
 if not result.get("highly_effective", False):
 rel.status = "failed_effectiveness" #
 if self.accounting_standard == AccountingStandard.ASC_815: #
 result["action_required"] = "DEDESIGNATE" #
 else: # IFRS 9
 result["action_required"] = "REBALANCE_OR_DEDESIGNATE" #

 return result

 def _dollar_offset_test(self, hedge_id: str, test_date: datetime, x: np.ndarray, y: np.ndarray) -> Dict:
 """
 """
 Perform dollar-offset effectiveness test.

 Tests whether cumulative hedge changes offset cumulative hedged item changes
 within acceptable effectiveness range (80-125% for ASC 815).
 """
 cum_x = float(np.sum(x)) #
 cum_y = float(np.sum(y)) #

 if abs(cum_x) < 1e-12:
 offset_ratio = 0.0 #
 eff_pct = 0.0 #
 else:
 offset_ratio = -cum_y / cum_x #
 eff_pct = offset_ratio * 100.0 #

 # Apply standard-specific effectiveness criteria
 if self.accounting_standard == AccountingStandard.ASC_815: #
 highly_effective = (80.0 <= eff_pct <= 125.0) #
 else: # IFRS 9
 highly_effective = (offset_ratio > 0) and (50.0 <= eff_pct <= 200.0) #

 # Calculate ineffectiveness
 perfect_offset = -cum_x #
 ineffectiveness = cum_y - perfect_offset #

 return {
 'hedge_id': hedge_id,
 'test_date': test_date,
 'test_type': 'retrospective',
 'method': 'dollar_offset',
 'cumulative_hedged_item_change': cum_x,
 'cumulative_hedging_instrument_change': cum_y,
 'offset_ratio': offset_ratio,
 'effectiveness_percentage': eff_pct,
 'highly_effective': bool(highly_effective),
 'ineffectiveness_amount': ineffectiveness,
 'observations': int(len(x))
 }

 def _regression_test(self, hedge_id: str, test_date: datetime, x: np.ndarray, y: np.ndarray) -> Dict:
 """
 """
 Perform regression-based effectiveness test.

 Uses statistical regression to measure correlation between hedge and hedged item
 """
 if len(x) < 2:
 return {'status': 'insufficient_data', 'hedge_id': hedge_id}

 x_mean = float(np.mean(x)) #
 y_mean = float(np.mean(y)) #

 cov_xy = float(np.mean((x - x_mean) * (y - y_mean))) #
 var_x = float(np.mean((x - x_mean) ** 2)) #

 if var_x < 1e-12:
 return {'status': 'variance_zero', 'hedge_id': hedge_id}

 # Calculate regression parameters
 slope = cov_xy / var_x #
 intercept = y_mean - slope * x_mean #

 # Calculate R-squared
 y_pred = slope * x + intercept #
 ss_res = float(np.sum((y - y_pred) ** 2)) #
 ss_tot = float(np.sum((y - y_mean) ** 2)) #

 r_squared = 1.0 - (ss_res / ss_tot) if ss_tot > 1e-12 else 0.0 #

 # Apply effectiveness criteria
 if self.accounting_standard == AccountingStandard.ASC_815: #
 highly_effective = (r_squared >= 0.80) and (-1.25 <= slope <= -0.80) #
 else: # IFRS 9
 highly_effective = (r_squared >= 0.80) and (slope < 0) #

 return {
 'hedge_id': hedge_id,
 'test_date': test_date,
 'test_type': 'retrospective',
 'method': 'regression',
 'slope': slope,
 'intercept': intercept,
 'r_squared': r_squared,
 'highly_effective': bool(highly_effective),
 'observations': int(len(x))
 }

 def _critical_terms_test(self, hedge_id: str, test_date: datetime) -> Dict:
 """
 """
 Perform critical terms match assessment.

 When hedge and hedged item have identical critical terms (notional, maturity,
 currency), qualitative assessment may suffice for effectiveness.
 """
 rel = self.relationships[hedge_id] #

 return {
 'hedge_id': hedge_id,
 'test_date': test_date,
 'test_type': 'qualitative',
 'method': 'critical_terms_match',
 'highly_effective': True,
 'rationale': 'Critical terms (notional, maturity, currency) match between hedge and hedged item'
 }

 def calculate_financial_statement_impact(
 self,
 hedge_id: str,
 period_derivative_change: float,
 period_hedged_item_change: float
 ) -> Dict:
 """
 Calculate financial statement impact for hedge accounting.

 Parameters:
 -----------
 hedge_id : str
 Hedge relationship identifier
 period_derivative_change : float
 Period change in derivative fair value
 period_hedged_item_change : float
 Period change in hedged item value

 Returns:
 --------
 dict
 Financial statement impact allocation
 """
 rel = self.relationships.get(hedge_id) #
 if rel is None:
 raise ValueError(f"Unknown hedge_id: {hedge_id}")

 if rel.hedge_type == HedgeType.CASH_FLOW: #
 # Cash flow hedge: effective portion to OCI, ineffective to earnings
 effective_portion = min(abs(period_derivative_change), abs(period_hedged_item_change)) #
 if period_derivative_change * period_hedged_item_change < 0:
 effective_portion = effective_portion #
 else:
 effective_portion = 0 #

 ineffective_portion = period_derivative_change - (effective_portion if period_derivative_change > 0 else -effective_portion) #

 return {
 'hedge_type': 'cash_flow',
 'derivative_change': period_derivative_change,
 'effective_portion_to_oci': effective_portion if period_derivative_change > 0 else -effective_portion,
 'ineffective_portion_to_earnings': ineffective_portion,
 'hedged_item_change': period_hedged_item_change,
 'net_earnings_impact': ineffective_portion
 }

 elif rel.hedge_type == HedgeType.FAIR_VALUE: #
 # Fair value hedge: both components to current earnings
 return {
 'hedge_type': 'fair_value',
 'derivative_change_to_earnings': period_derivative_change,
 'hedged_item_change_to_earnings': period_hedged_item_change,
 'net_earnings_impact': period_derivative_change + period_hedged_item_change
 }

 elif rel.hedge_type == HedgeType.NET_INVESTMENT: #
 # Net investment hedge: effective portion to CTA, ineffective to earnings
 effective_portion = min(abs(period_derivative_change), abs(period_hedged_item_change)) #
 if period_derivative_change * period_hedged_item_change < 0:
 effective_portion = effective_portion #
 else:
 effective_portion = 0 #

 ineffective_portion = period_derivative_change - (effective_portion if period_derivative_change > 0 else -effective_portion) #

 return {
 'hedge_type': 'net_investment',
 'derivative_change': period_derivative_change,
 'effective_portion_to_cta': effective_portion if period_derivative_change > 0 else -effective_portion,
 'ineffective_portion_to_earnings': ineffective_portion,
 'translation_adjustment': period_hedged_item_change,
 'net_earnings_impact': ineffective_portion
 }

 return {}

 def generate_compliance_report(self, reporting_period: str) -> pd.DataFrame:
 """
 """
 Generate compliance report for hedge accounting program.

 Parameters:
 -----------
 reporting_period : str
 Reporting period identifier

 Returns:
 --------
 pd.DataFrame
 Compliance report with all effectiveness tests
 """
 report_data = [] #

 for test in self.effectiveness_history:
 report_data.append({
 'Hedge ID': test['hedge_id'],
 'Test Date': test['test_date'].strftime('%Y-%m-%d'),
 'Method': test['method'],
 'Effectiveness %': test.get('effectiveness_percentage', test.get('r_squared', 0) * 100),
 'Status': 'PASS' if test.get('highly_effective') else 'FAIL',
 'Action Required': test.get('action_required', 'None')
 })

 return pd.DataFrame(report_data)


def demonstrate_hedge_accounting():
 """
 """
 Comprehensive demonstration of hedge accounting framework.
 """
 print("=" * 80) #
 print("CHAPTER 10: HEDGE ACCOUNTING FRAMEWORKS DEMONSTRATION")
 print("=" * 80) #
 print()

 # Initialize system
 system = HedgeAccountingSystem(AccountingStandard.ASC_815) #

 print("1. HEDGE RELATIONSHIP DESIGNATION")
 print("-" * 80)

 # Define hedged item and hedging instrument
 hedged_item = { #
 'description': 'Forecasted EUR 50M equipment purchase in Q2 2025',
 'notional': 50_000_000,
 'currency': 'EUR',
 'maturity_date': datetime(2025, 6, 30),
 'risk': 'FX rate variability on EUR/USD'
 }

 hedging_instrument = { #
 'description': 'EUR/USD Forward contract sell EUR 50M',
 'notional': 50_000_000,
 'currency': 'EUR',
 'maturity_date': datetime(2025, 6, 30),
 'forward_rate': 1.0850
 }

 # Designate hedge relationship
 designation = system.designate_hedge_relationship( #
 hedge_id="HEDGE_EUR_Q2_2025", #
 hedge_type=HedgeType.CASH_FLOW, #
 hedged_item=hedged_item, #
 hedging_instrument=hedging_instrument, #
 effectiveness_method=EffectivenessMethod.DOLLAR_OFFSET #
 )

 print(f"Hedge Relationship Designated:")
 print(f" Hedge ID: {designation['hedge_id']}")
 print(f" Type: {designation['hedge_type']}")
 print(f" Hedge Ratio: {designation['hedge_ratio']:.2f}")
 print(f" Documentation: {'Complete' if designation['documentation_complete'] else 'Incomplete'}")
 print(f" Status: {designation['status']}")
 print()

 print("Documentation Requirements Met:")
 print(" ✓ Hedging instrument identified (EUR/USD Forward)")
 print(" ✓ Hedged item identified (Forecasted equipment purchase)")
 print(" ✓ Risk management objective documented")
 print(" ✓ Effectiveness assessment method selected (Dollar-offset)")
 print(" ✓ Designation date recorded (contemporaneous)")
 print()

 print("2. PROSPECTIVE EFFECTIVENESS ASSESSMENT")
 print("-" * 80)
 print("Critical Terms Match Analysis:")
 print(f" Hedged Item Notional: EUR {hedged_item['notional']:,.0f}")
 print(f" Hedging Instrument Notional: EUR {hedging_instrument['notional']:,.0f}")
 print(f" Notional Match: ✓ (100%)")
 print(f" Maturity Dates: {hedged_item['maturity_date'].strftime('%Y-%m-%d')} vs {hedging_instrument['maturity_date'].strftime('%Y-%m-%d')}")
 print(f" Maturity Match: ✓")
 print(f" Currency Match: ✓ (Both EUR)")
 print()
 print(" Conclusion: High effectiveness expected (critical terms align)")
 print()

 print("3. QUARTERLY EFFECTIVENESS TESTING - Q1 2025")
 print("-" * 80)

 # Simulate hedge effectiveness data
 hedged_item_values = [0, -1_000_000, -2_500_000, -2_000_000] #
 hedging_instrument_values = [0, 1_000_000, 2_500_000, 2_000_000] #

 q1_test = system.run_effectiveness_test( #
 hedge_id="HEDGE_EUR_Q2_2025", #
 test_date=datetime(2025, 3, 31), #
 hedged_item_values=hedged_item_values, #
 hedging_instrument_values=hedging_instrument_values #
 )

 print("Dollar-Offset Test Results:")
 print(f" Cumulative Hedged Item Change: ${q1_test['cumulative_hedged_item_change']:,.2f}")
 print(f" Cumulative Hedging Instrument Change: ${q1_test['cumulative_hedging_instrument_change']:,.2f}")
 print(f" Offset Ratio: {q1_test['offset_ratio']:.4f}")
 print(f" Effectiveness %: {q1_test['effectiveness_percentage']:.2f}%")
 print(f" Highly Effective (80-125%): {q1_test['highly_effective']}")
 print(f" Ineffectiveness Amount: ${q1_test['ineffectiveness_amount']:,.2f}")
 print()

 if q1_test['highly_effective']:
 print(" ✓ PASSES effectiveness test - Hedge accounting continues")
 else:
 print(" ✗ FAILS effectiveness test - De-designation required")
 print()

 print("4. REGRESSION METHOD TEST (ALTERNATIVE)")
 print("-" * 80)

 # Test IFRS 9 system with regression method
 system2 = HedgeAccountingSystem(AccountingStandard.IFRS_9) #

 system2.designate_hedge_relationship(
 hedge_id="HEDGE_EUR_001", #
 hedge_type=HedgeType.CASH_FLOW, #
 hedged_item=hedged_item, #
 hedging_instrument=hedging_instrument, #
 effectiveness_method=EffectivenessMethod.REGRESSION #
 )

 regression_test = system2.run_effectiveness_test( #
 hedge_id="HEDGE_EUR_001", #
 test_date=datetime(2025, 3, 31), #
 hedged_item_values=hedged_item_values, #
 hedging_instrument_values=hedging_instrument_values #
 )

 print("Regression Analysis Results:")
 print(f" Slope (Beta): {regression_test['slope']:.4f}")
 print(f" Intercept: {regression_test['intercept']:,.2f}")
 print(f" R-squared: {regression_test['r_squared']:.4f}")
 print(f" Highly Effective: {regression_test['highly_effective']}")
 print(f" Observations: {regression_test['observations']}")
 print()
 print(" Interpretation:")
 print(f" Slope near -1.0 ({regression_test['slope']:.2f}) confirms proper hedge offset")
 print()

 print("5. FINANCIAL STATEMENT IMPACT - Q1 2025")
 print("-" * 80)

 period_derivative_change = 2_500_000 #
 period_hedged_item_change = -2_500_000 #

 fs_impact = system.calculate_financial_statement_impact( #
 hedge_id="HEDGE_EUR_Q2_2025", #
 period_derivative_change=period_derivative_change, #
 period_hedged_item_change=period_hedged_item_change #
 )

 print("Cash Flow Hedge Accounting Treatment:")
 print(f" Derivative Fair Value Change: ${fs_impact['derivative_change']:,.2f}")
 print(f" Effective Portion → AOCI: ${fs_impact['effective_portion_to_oci']:,.2f}")
 print(f" Ineffective Portion → Earnings: ${fs_impact['ineffective_portion_to_earnings']:,.2f}")
 print(f" Hedged Item Change: ${fs_impact['hedged_item_change']:,.2f}")
 print(f" Net Earnings Impact: ${fs_impact['net_earnings_impact']:,.2f}")
 print()
 print(" Journal Entries:")
 print(" DR: Derivative Asset $2,500,000")
 print(" CR: AOCI $2,500,000")
 print(" (Record effective portion in other comprehensive income)")
 print()

 print("6. COMPLIANCE REPORT GENERATION")
 print("-" * 80)

 compliance_report = system.generate_compliance_report("Q1 2025") #
 print("\nQuarterly Hedge Accounting Compliance Report:")
 print(compliance_report.to_string(index=False)) #
 print()

 print("=" * 80) #
 print("KEY TAKEAWAYS")
 print("=" * 80) #
 print()
 print("Hedge Accounting Requirements:")
 print(" • Formal designation at inception with contemporaneous documentation")
 print(" • ASC 815: 80-125% effectiveness range for dollar-offset method")
 print(" • IFRS 9: Economic relationship demonstration (more principles-based)")
 print(" • Quarterly effectiveness testing required")
 print(" • Failed tests trigger de-designation (ASC 815) or rebalancing (IFRS 9)")
 print()
 print("Financial Statement Treatment:")
 print(" • Cash Flow Hedges: Effective portion to OCI, ineffective to earnings")
 print(" • Fair Value Hedges: Both hedge and hedged item to earnings")
 print(" • Net Investment Hedges: Effective portion to CTA, ineffective to earnings")
 print()
 print("Operational Best Practices:")
 print(" • Maintain centralized hedge documentation repository")
 print(" • Automate effectiveness testing calculations")
 print(" • Generate audit-ready compliance reports")
 print(" • Coordinate with external auditors on methodology")
 print()

 return {
 'designation': designation,
 'effectiveness_test': q1_test,
 'regression_test': regression_test,
 'financial_impact': fs_impact,
 'compliance_report': compliance_report
 }


# =============================================================================
# EXPECTED OUTPUT AND INTERPRETATION
# =============================================================================
"""
EXPECTED OUTPUT AND INTERPRETATION

The Hedge Accounting System produces comprehensive hedge accounting management
capabilities compliant with ASC 815 (U.S. GAAP) and IFRS 9 standards.

1. **Hedge Relationship Designation**:
 Creates formal hedge relationship with required documentation:
 - Hedge ID: HEDGE_EUR_Q2_2025
 - Type: cash_flow
 - Hedge Ratio: 1.00
 - Documentation: Complete
 - Status: designated

 Documentation checklist automatically verified including hedging instrument
 identification, hedged item description, risk management objective, and
 effectiveness assessment methodology. Critical for audit support.

2. **Prospective Effectiveness Assessment**:
 Critical terms analysis shows perfect alignment:
 - Notional Match: ✓ (100%)
 - Maturity Match: ✓
 - Currency Match: ✓

 Perfect alignment provides qualitative basis for effectiveness, potentially
 reducing quarterly testing burden under certain circumstances.

3. **Quarterly Effectiveness Testing**:
 Dollar-offset test results:
 - Effectiveness: 100.00%
 - Highly Effective: True (80-125% range)
 - Ineffectiveness: $0

 Perfect effectiveness indicates ideal hedge offset. In practice, 95-105%
 effectiveness common with minor ineffectiveness amounts.

4. **Regression Method Test**:
 Statistical analysis shows:
 - Slope: -1.0000 (perfect offset)
 - Highly Effective: True

 Regression method provides statistical evidence, particularly useful for
 portfolio hedges or when critical terms don't perfectly align.

5. **Financial Statement Impact**:
 Cash flow hedge accounting treatment:
 - Effective Portion → AOCI: $2,500,000
 - Ineffective Portion → Earnings: $0
 - Net Earnings Impact: $0

 Effective portion deferred in AOCI, avoiding earnings volatility until
 hedged transaction affects P&L, achieving timing alignment.

6. **Compliance Report**:
 Audit-ready documentation showing:
 - Test results by hedge relationship
 - Pass/fail status determination
 - Required actions for failed tests

 Demonstrates ongoing effectiveness monitoring and proper qualification
 maintenance for regulatory compliance.
"""


# =============================================================================
# HOW TO READ THIS
# =============================================================================
"""
HOW TO READ THIS CODE

**Understanding Hedge Accounting Frameworks:**

Hedge accounting permits matching hedge instrument gains/losses with hedged item
impacts in financial statements, preventing artificial earnings volatility from
effective risk management programs. Without hedge accounting, derivatives mark
to market through current earnings while hedged items may not recognize offsetting
changes until later periods.

ASC 815 (U.S. GAAP) employs rules-based approach with bright-line 80-125%
effectiveness requirement. Relationships falling outside this range fail quarterly
testing, requiring immediate de-designation. The strict threshold provides clarity
but less flexibility.

IFRS 9 uses principles-based framework requiring demonstration of "economic
relationship" without specific numerical thresholds. This permits continuing
hedge accounting for relationships slightly outside traditional ranges if
economic relationship remains valid.

**Interpreting Effectiveness Testing Results:**

Dollar-offset effectiveness = (Cumulative Hedge Change / Cumulative Hedged Item #
Real-world hedges typically range 95-105% effectiveness with minor ineffectiveness
from timing mismatches, interest rate changes, or basis fluctuations.

Effectiveness outside 80-125% indicates significant hedge imperfection requiring
investigation. Common causes include wrong hedge direction, incorrect notional
amounts, maturity mismatches, or credit spread changes.

suggests hedge not tracking exposure adequately.

**Reading Financial Statement Impacts:**

Cash flow hedge accounting defers effective portion in AOCI (balance sheet equity),
with subsequent reclassification when hedged transaction affects P&L. For forecasted
purchase hedge, derivative gains accumulate in AOCI, then reclassify to equipment
cost basis at purchase, flowing through depreciation.

Ineffective portion flows immediately to current earnings under both standards,
representing hedge imperfection not qualifying for deferral. Zero ineffectiveness
indicates ideal hedge; typical ineffectiveness ranges 1-5% of total changes.

Fair value hedge treatment differs - both hedge instrument and hedged item changes
flow immediately through earnings, achieving natural offset without AOCI deferral.

**Critical Terms Match Shortcut:**

When hedge and hedged item share identical critical terms (notional, maturity,
currency), qualitative assessment may suffice without quantitative testing.
This dramatically reduces administrative burden but requires absolute perfection
in alignment.

**Compliance and Audit Considerations:**

External auditors scrutinize hedge accounting extensively. Common focus areas:
- Contemporaneous designation documentation completeness
- Effectiveness testing methodology consistency
- Calculation accuracy and data validation
- Financial statement presentation compliance
- Disclosure adequacy per accounting standards

Maintaining centralized documentation with complete test results and audit trails
facilitates external audit procedures and regulatory examinations.

The framework provides institutional-grade hedge accounting management suitable
for corporate treasury departments managing complex hedging programs requiring
ASC 815 or IFRS 9 compliance across multiple currencies and hedge types.
"""


if __name__ == "__main__": #
 # Run demonstration
 result = demonstrate_hedge_accounting() #
 print("\n" + "=" * 80) #
 print("DEMONSTRATION COMPLETE")
 print("=" * 80) #

# STEGANOGRAPHIC_MARKER_ab11d2b8d267
__license_verify = "ab11d2b8d267" # Hidden license check
__auth_token = "Uk9OREFOSU5JX1BV" # Authentication token
__track_usage = True # Usage tracking enabled
